

1

VULNERABLE WEB APPLICATION ATTACKS, SOLUTIONS, AND

PREVENTION TECHNIQUES

 Shyamal Goel

Vellore Institute of Technology

 shyamal.goel2016@vitstudent.ac.in

--

ABSTRACT : We have seen a significant rise in the number of web application attacks

worldwide. Black hat hackers and cyber criminals are now employing new and sophisticated

techniques to compromise web systems, which leads to a tremendous loss of capital as well

as trust of investors, clients and customers. There are several culprits in this regard. Lack of

awareness about cyber security and not giving due attention to the same when calculating

the budget of production to save cost and time is a very major reason which has led to

several attackers gaining illegitimate access to computers relatively easily. Furthermore,

web developers hardly ever keep web application security in mind while designing. It is very

important for any business to keep their customers’ data and information secure. The cyber

criminals are now becoming extremely skilled and equipped with the latest technologies,

infrastructure, computation resources and adequate funding. There are plenty of ways a

common man can learn how to hack, break and compromise even the most secure

applications. Several hacking softwares and tools are easily available on the internet, which

allows even relatively less skilled criminals to carry out massive cyber attacks. With proper

security policies, periodic testing and patching up the vulnerable segments in the codes of

the applications, most of these attacks can be easily avoided.

Keywords : Cross Site Scripting(XSS), SQL Injection, Session and Cookie Tampering, Local File

Inclusion, Vulnerable File Upload, Command Injection, Kali Linux, Burp Suite, MSFVenom,

WAMP Server

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

392

IJSER © 2020
http://www.ijser.org

IJSER

2

INTRODUCTION

Security of web applications is an extremely important and current topic which is very often

overlooked whenever there is an in-depth discussion of web applications. There are several possible

ways to attack a web application. Amongst the most common ones is Cross Site Scripting (XSS). In

this type of attack, the attacker embeds code in the input which is being accepted by the system.

This code is often enclosed in <script> and related tags. When the input is processed by the browser,

the attacker’s code is executed. There are mostly 3 types of XSS attacks. They are stored XSS,

reflected XSS and DOM based XSS. Reflected XSS is the most widely used. This type of attack

happens when the system reflects the input which has been given by the user, often times part of a

larger input. When the input is processed by the browser, the malicious code is executed. In stored

XSS, the user’s input is stored in the database. When it is fetched by the browser, the malicious code

executes. Hence the user can craft malicious Javascript strings which can be injected and executed in

the browser to reveal sensitive functionalities. In SQL injection, the input given by the user is directly

used in the SQL queries to fetch data from the MySQL database. The input is crafted in such a way

that excess information can be fetched by the SQL query when it is executed thus revealing sensitive

information. Another very common attack is session and cookie tampering. We know that HTTP is a

stateless and connectionless protocol, and hence to remember the user who is visiting the system

and identify the sessions, cookies are used, which are stored on the browser. These can be studied

and modified to predict the cookies of other users and hence gain illegitimate access. In a local file

inclusion attack, some files are fetched from the server by the application and the user’s input is

directly used to traverse the directory and identify the file. Hence input can be crafted to fetch

sensitive files which would be normally hidden from the user. This can also lead to directory

traversal attacks. Furthermore, sometimes the user’s input is directly used in operating system

commands to execute and fetch the results. Again, we modify the input to execute those commands

which will return sensitive information and this is called the command injection attack. The main

reason behind these attacks is a lack of filtering of the input. The input should be trimmed, sanitized

and stripped of any malicious strings which may have been embedded. Sometimes, a system asks for

files like images, pdfs etc. , but it does not check the format of the file uploaded, hence making it

possible to upload malicious files, viruses and malwares. This is called a vulnerable file upload. I have

demonstrated all these vulnerabilities in this paper, have explained the reasons for the same and

have patched them successfully.

OBJECTIVE :

STAGE 1: TO CODE AN INTENTIONALLY VULNERABLE WEB APPLICATION AND

DEMONSTRATE VARIOUS TYPES OF WEB ATTACKS

STAGE 2: TO PATCH UP THE APPLICATION AND MAKE IT TO IMMUNE TO WEB ATTACKS

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

393

IJSER © 2020
http://www.ijser.org

IJSER

3

VULNERABILITIES DEMONSTRATED =>

1. CROSS SITE SCRIPTING (XSS)

2. SESSION AND COOKIE TAMPERING

3. SQL INJECTION

4. LOCAL FILE INCLUSION

5. COMMAND INJECTION

6. ARBITRARY FILE UPLOAD

PLATFORM AND SYSTEM REQUIREMENTS =>

• PHP-MYSQL APPLICATION –This is a PHP-MYSQL application which will be vulnerable to web

attacks.

• WAMP SERVER

• VMWARE VIRTUAL MACHINE (FOR KALI LINUX , BURP SUITE)

• KALI LINUX- Kali Linux is a Debian-derived Linux distribution designed for digital forensics and

penetration testing

• BURP SUITE- Burp or Burp Suite is a graphical tool for testing Web application security. We will use it

to set up a proxy and intercept HTTP requests.

FUNCTIONING OF THE WEB APPLICATION =>

There are 3 types of user =>

• Doctor

• Patient

• Administrator

A patient is able to carry out the following tasks =>

• Fix appointment

• View appointment

• View profile

• Update profile

A doctor is able to carry out the following tasks =>

• View Appointment

• Prescribe Diagnosis

• View Profile

• Update profile

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

394

IJSER © 2020
http://www.ijser.org

IJSER

4

An administrator is able to view reports on =>

• Application Management Report

• Branch Management Report

• Doctor Management Report

• Staff Management Report

Steps =>

1. The user is met with a login page (login.php), where she is required to select the type of

user, out of Patient, Doctor, Administrator. A session is created in which the type of the user

is stored in the PHP $_SESSION array. For eg: $_SESSION[‘type’]=”patient”;

2. She then has to enter her username and password(login_credential.php). If the entry exists

in the database (chosen using $_SESSION[‘type’]) and the password is valid, we initialise

$_SESSION[‘username’]=”name entered”. A cookie is generated and stored whose name is

‘user’ and value is ‘name_type’. For example, if the name of the user is Dean and he is a

patient then cookie named ‘Dean_patient’ is created.

3. After the user has gained a complete session and cookie, the user can choose the function

he wants to perform. The values stored as cookies will be used in fetching, storing, deleting,

modifying and interacting with the concerned database as required.

Database =>

The database, called hospital_vuln_app has the following tables =>

1. administrators (Name,Age,Gender,Department,Password)

2. appointments (Name, Age, Department,Doctor,Date)

3. doctors_profile (Name,Age,Gender,Department,Contact,Password)

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

395

IJSER © 2020
http://www.ijser.org

IJSER

5

4. patients_table(Name,Age,Gender,Diagnosis,Contact,Password)

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

396

IJSER © 2020
http://www.ijser.org

IJSER

6

WEB PAGES DEVELOPED

INSECURE VESION ->

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

397

IJSER © 2020
http://www.ijser.org

IJSER

7

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

398

IJSER © 2020
http://www.ijser.org

IJSER

8

SECURE VERSION ->

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

399

IJSER © 2020
http://www.ijser.org

IJSER

9

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

400

IJSER © 2020
http://www.ijser.org

IJSER

10

RELEVANT PAGES =>

• Hospital_info (Folder)

• Images_folder (Folder)

• administration

• change_patient_password

• doctor_interface

• doctor_login

• file_upload

• fix_appointment

• hosp,hosp2,hosp3 (Images)

• login

• login_credential

• patient

• patient_interface

• patient_login

• prescribe_diagnosis

• reception

• report

• trial

• update_doc_profile

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

401

IJSER © 2020
http://www.ijser.org

IJSER

11

• update_profile

• view_appointment

• view_doc_profile

• view_doctor_appointment

• view_patient_appointment

• view_patient_profile_doc

• view_profile

DEMONSTRATION OF ATTACKS, STAGE 1

CROSS SITE SCRIPTING
1. Login in as ‘Patient’ and give name as ‘Dean’ and password as ‘1234’.
2. Then select the ‘fix appointment’ option.
3. Enter the values as : Age = 25 ; Department = Oncology; Doctor =

<script>alert(“hello”)</script> ; Date = 06-09-2018

4. Now login as ‘doctor’ and give name as ‘Claire’ and password ‘444tt’.
5. Select the option ‘View Appointment’ and give name as ‘Dean’

6. After clicking submit, we will get the following output =>

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

402

IJSER © 2020
http://www.ijser.org

IJSER

12

REASON FOR XSS =>
The value taken from the user during fixing an appointment is directly stored into the
database without validation.

PREVENTION =>

• HTML escape

• URL escape

• HTML entity encoding

• Sanitize HTML

• Javascript escape

SESSION AND COOKIE TAMPERING =>
1. We are running wamp server on 127.0.0.1, port 8080. Set up an intercepting proxy

using Burp Suite on 127.0.0.1, port 8090
2. Login as ‘patient’ and ‘Dean’.
3. Switch on the intercept and click on the ‘view profile’ option. Click on ‘Forward’ to

send the GET request.
4. We can see the cookie value in the intercept =>

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

403

IJSER © 2020
http://www.ijser.org

IJSER

13

5. The cookie name is ‘user’ and value is ‘Dean_patient’. Forward the POST request.

6. Change the value of the cookie ‘user’ to ‘Roger_admin’ in the GET request for

/view_profile.php. We have assumed that we know the first name of the

administrator. (Roger is one of the administrators). Since we see the name of the

patient is present in the value of the cookie, it is a reasonable guess that the system

might do the same for other types of users like Doctors and Administrators. Also the

type of user ‘patient’ is also present hence on similar grounds we can change it to

‘admin’.

7. Switch off the intercept proxy and let this modified request pass.

8. We can see the above exploit worked and we can view the profile of an

administrator Roger.

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

404

IJSER © 2020
http://www.ijser.org

IJSER

14

 REASON => The cookie value is extracted from the username and type of user which is

entered by the user and is not encrypted in the HTTP Request. Then these values stored in the

cookie are directly used in SQL queries to access the database.

PREVENTION =>

• Sensitive data like cookies should be encrypted using strong encryption mechanism like

MD5, SHA etc.

• Structures like cookies which can be manipulated by the client should never be embedded

directly into sensitive functions on the database.

SQL INJECTION =>

1. Login as ‘patient’ and ‘Dean’.
2. Select the option ‘view profile’

3. Intercept the request.

4. Forward the requests till we have an intercept of the GET request to ‘view_profile.php’

5. Change the value of cookie as user=Dean’ or ‘1’=’1_patient

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

405

IJSER © 2020
http://www.ijser.org

IJSER

15

6. Let the intercepted request pass

7. We get the whole table ‘patient_table’

 REASON => Values extracted from the cookie are directly used in SQL queries to access the select

the table and access database.

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

406

IJSER © 2020
http://www.ijser.org

IJSER

16

PREVENTION =>

• Don't use dynamic SQL and don't construct queries with user input

• Parameterized queries

• Escape all user-supplied input

• Hex encoding all input

• Escape SQLi in PHP

LOCAL FILE INCLUSTION =>

STEPS =>

1. Login as ‘admin’ user and give name as ‘Roger’ and password as ‘1234rr’.

2. We will directed to the main administration page (administration.php). Here the

administrator can carry out 2 functions, he can view any of the files mentioned in the list and

he can view his profile.

3. Let us view some files and click on the button ‘report.php’. The administrator will have now

have an input box visible to him or her through which she can enter the name of the file she

wants to view. But look at the URl. It is as follows

4. We will now try to access a local file called ‘trial2.txt’.

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

407

IJSER © 2020
http://www.ijser.org

IJSER

17

5. Change the URL to

http://127.0.0.1/hospital_vuln_app/administration.php?submit=../../trial2.txt

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

408

IJSER © 2020
http://www.ijser.org

IJSER

http://127.0.0.1/hospital_vuln_app/administration.php?submit=../../trial2.txt

18

REASON => The application got the path to the file that has to be included as an input without

treating it as untrusted input. This would allow a local file to be supplied to the include statement.

PREVENTION =>

• The best way to eliminate Local File Inclusion (LFI) vulnerabilities is to avoid dynamically

including files based on user input.

• If this is not possible, the application should maintain a whitelist of files that can be included

in order to limit the attacker’s control over what gets included.

COMMAND INJECTION =>

STEPS=>

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

409

IJSER © 2020
http://www.ijser.org

IJSER

19

1. Login as ‘admin’ user and give name as ‘Roger’ and password as ‘1234rr’.

2. We will directed to the main administration page (administration.php). Here the

administrator can carry out 2 functions, he can view any of the files mentioned in the list and

he can view his profile.

3. Let us view some files and click on the button ‘report.php’. The administrator will have now

have an input box visible to him or her through which she can enter the name of the file she

wants to view.

4. Enter ‘Application_Management.txt’

5. Now we will carry out a command injection attack =>

Enter in the tab

Application_Management.txt && cd.. && cd.. && cd.. && cd.. && dir

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

410

IJSER © 2020
http://www.ijser.org

IJSER

20

6. We were able to view the local directories in the server

REASON => Input entered by the user is directly being embedded in the path which is then used to

fetch the content of the applications using shell commands.

PREVENTION=>

• Avoid calling OS commands directly

• White list Regular Expression

• Parametrization in conjunction with Input Validation

FILE UPLOAD VULNERABILITY =>

STEPS=>

1. Login as ‘patient’ and ‘Dean’

2. Click on the upload image button

3. Instead of uploading an image, we will upload a PHP code to gain a reverse TCP connection.

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

411

IJSER © 2020
http://www.ijser.org

IJSER

21

4. Create the PHP file using msfvenom.

5. We have started a reverse TCP handler on 192.168.121.136:4444 and will now upload the

file shell_exploit_vuln.php

6. Now go to ‘fix appointment’

 Age:21

 Department: Oncology

 Doctor:

<script>window.location="http://127.0.0.1/hospital_vuln_app/images_folder/shell_exploit_

vuln.php"</script>

Date:

29-10-2018

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

412

IJSER © 2020
http://www.ijser.org

IJSER

22

7. Now view the appointment

REASON => The format and content of the file is not properly validated.

PREVENTION =>

• sanitizing the file name so that it does not contain an extension that can execute

code via the web server.

• When receiving an upload, you can avoid attackers uploading executable PHP or

other code by examining your uploads for content. For example, if you are accepting

image uploads, call the PHP getimagesize() function on the uploaded file to

determine if it is a valid image.

• Only allow specific file extensions.

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

413

IJSER © 2020
http://www.ijser.org

IJSER

http://php.net/manual/en/function.getimagesize.php

23

STAGE 2

SOLUTIONS TO EXISTING PROBLEMS

PREVENTION :

1) XSS PREVENTION

We stripped the sensitive characters, and the letters like ‘s’,’c’,’r’,’i’,’p’,’t’, and replaced the

any string ‘<script>’ and ‘</script>’

2) SQLi PREVENTION

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

414

IJSER © 2020
http://www.ijser.org

IJSER

24

Only those attributes or parameters which match the pattern are allowed to be passed

directly into the SQL query.

3) SESSION MISMANAGEMENT PREVENTION

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

415

IJSER © 2020
http://www.ijser.org

IJSER

25

a. We encrypt the cookies using MD5

b. We do not store the sensitive information in cookies, instead we store them in server

side sessions to query the database, hence can not be manipulated by the user.

4) LOCAL FILE INCLUSION PREVENTION

PREVENTED ATTACK

DIRECTED TO ADMINISTRATION.PHP

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

416

IJSER © 2020
http://www.ijser.org

IJSER

26

Only those files will be included which are listed. If the file specified in the URL is not listed in

the array, it is not accessible.

$page_files=array('report.php','administration.php','change_patient_password.php','doct

or_interface.php','doctor_login.php','file_upload.php','fix_appointment.php','login.php','l

ogin_credential.php','patient_interface.php','view_doc_profile.php','view_profile.php');

if($_SERVER['REQUEST_METHOD']=='GET')

{

 if(isset($_GET['submit'])

 {

 $file=$_GET['submit'];

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

417

IJSER © 2020
http://www.ijser.org

IJSER

27

 if(in_array($file,$page_files))

 {

 include('C:\\wamp64\\www\\hospital_vuln_app\\' . $file);

 }

5) COMMAND INJECTION PREVENTION

Application_Management.txt && cd.. && cd.. && cd.. && cd.. && dir

PREVENTED AND DIRECTED TO THE PAGE ‘REPORT.PHP’

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

418

IJSER © 2020
http://www.ijser.org

IJSER

28

We have used escapeshellarg($filename) to prevent the command injection by escaping any

arguments or characters which may execute arbitrary code on the shell.

6) ARBITRARY FILE UPLOAD

MALICIOUS PHP SCRIPT NOT ALLOWED TO BE UPLOADED, ATTACK PREVENTED

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

419

IJSER © 2020
http://www.ijser.org

IJSER

29

We have checked the format of the file being uploaded and made sure that it is an image file

(jpeg,jpg,png) and is of appropriate size.

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

420

IJSER © 2020
http://www.ijser.org

IJSER

30

CONCLUSION =>

We have successfully demonstrated the most common types of web application attacks. We saw

how easily we can craft input and compromise systems using XSS and SQLi. Lack of sanitization can

also lead to malicious commands being injected as well as to traverse the directories of the victim

machines. Furthermore, we can even upload malwares and get reverse connections from the same.

Predictable cookies can lead to attackers compromising the sessions of other users and accessing

sensitive and illegitimate information. We must sanitize the data and trim the data of special

characters and encoding wherever possible. This will remove the key characters which causes strings

to be malicious. Proper escaping of characters is a must, before they are used as parameters in

system functions or database queries. Also, there should be a proper mechanism to define how the

system behaves when arbitrary data is submitted to the server, which does not know how to handle

it. Safe and careful processing must be performed on the input data, and safe programming methods

must be employed .Rectifying the errors after a cyber attack is much more expensive than deploying

preventing methods in the first place. Therefore, we must make sure that the web applications we

are developing are secure so that we can protect our business and most importantly our customers,

and maintain their trust in us. Hence, adequate amount of time and resources, along with tighter

regulations is the need of the hour along with the organisations effectively implementing the

required technical and organisational measures to uphold the security standards to protect the user

data and sensitive information from ever evolving cyber threats.

REFERENCES =>

1. Kali Linux Documentation

2. Burp Suite Documentation

3. Web Application Security, A Beginner's Guide [Bryan Sullivan, Vincent Liu]

4. Improving Web Application Security: Threats and Countermeasures by Microsoft

Corporation

5. Damn Vulnerable Web Application (DVWA)

6. W3 Schools

7. Web Application Defender's Cookbook: Battling Hackers and Protecting Users, by Ryan C.

Barnett

8. Buggy Web Application (bWAPP)

9. Burp Suite Essentials, by Akash Mahajan

10. Mastering Modern Web Penetration Testing, by Prakhar Prasad

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020
ISSN 2229-5518

421

IJSER © 2020
http://www.ijser.org

IJSER

